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Background and Objective: Various digital pathology tools have been developed to aid in analyzing tissues 

and improving cancer pathology. The multi-resolution nature of cancer pathology, however, has not been 

fully analyzed and utilized. Here, we develop an automated, cooperative, and multi-resolution method for 

improving prostate cancer diagnosis. 

Methods: Digitized tissue specimen images are obtained from 5 tissue microarrays (TMAs). The TMAs 

include 70 benign and 135 cancer samples (TMA1), 74 benign and 89 cancer samples (TMA2), 70 benign 

and 115 cancer samples (TMA3), 79 benign and 82 cancer samples (TMA4), and 72 benign and 86 cancer 

samples (TMA5). The tissue specimen images are segmented using intensity- and texture-based features. 

Using the segmentation results, a number of morphological features from lumens and epithelial nuclei 

are computed to characterize tissues at different resolutions. Applying a multiview boosting algorithm, 

tissue characteristics, obtained from differing resolutions, are cooperatively combined to achieve accurate 

cancer detection. 

Results: In segmenting prostate tissues, the multiview boosting method achieved ≥ 0.97 AUC using TMA1. 

For detecting cancers, the multiview boosting method achieved an AUC of 0.98 (95% CI: 0.97–0.99) as 

trained on TMA2 and tested on TMA3, TMA4, and TMA5. The proposed method was superior to single- 

view approaches, utilizing features from a single resolution or merging features from all the resolutions. 

Moreover, the performance of the proposed method was insensitive to the choice of the training dataset. 

Trained on TMA3, TMA4, and TMA5, the proposed method obtained an AUC of 0.97 (95% CI: 0.96–0.98), 

0.98 (95% CI: 0.96–0.99), and 0.97 (95% CI: 0.96–0.98), respectively. 

Conclusions: The multiview boosting method is capable of integrating information from multiple reso- 

lutions in an effective and efficient fashion and identifying cancers with high accuracy. The multiview 

boosting method holds a great potential for improving digital pathology tools and research. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

In 2016, it is expected that more than 180,0 0 0 men are diag-

osed with prostate cancer and more than 26,0 0 0 men are died

rom the disease (second leading cause of deaths from cancer) [1] .

or prostate cancer diagnosis, over one million biopsies are an-

ually performed. Biopsied prostate specimens are sectioned and

sually stained with hematoxylin and eosin (H&E) to enhance the

ontrast in specimens. The stained specimens are examined un-

er an optical brightfield microscopy by pathologists. A majority

f the specimens are negative for prostate cancer. Cancer speci-

ens are assigned a histological grade (or disease status) according

o the Gleason grading system [2] . Assessing the qualitative char-
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cteristics of tissues/cells, pathologists determine a Gleason grade

etween 1 (relatively benign) and 5 (highly aggressive). The Glea-

on grade offers the definitive diagnosis of prostate cancer and

orms the basis for cancer management and treatment today. The

anual and qualitative nature of prostate pathology, however, not

nly limits the speed and throughput but also impedes the accu-

acy and reliability due to the substantial inter- and intra-observer

ariations in grading [3–5] . Automated and quantitative tools for

rostate pathology could, therefore, aid in improving prostate can-

er diagnosis. 

Digital pathology [6] is an emerging practice of computerized

mage processing, analysis, and interpretation of digitized tissue

pecimen images. Digitized tissue specimen images are often seg-

ented into a number of histological objects/classes (e.g., ep-

thelium, stroma, and nucleus) due to their biological, chemical,

nd functional differences [7] . The segmented histological objects

re used to characterize and quantify tissue appearances and mi-

http://dx.doi.org/10.1016/j.cmpb.2017.02.023
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Fig. 1. A flowchart of multiview boosting cancer detection . A cascaded multiview boosting tissue segmentation method is trained and validated using TMA1. Using the 

tissue segmentation, a multiview boosting cancer detection method, utilizing tissue morphology, is constructed based on TMA2 and validated using TMA3, TMA4, and TMA5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

a  

p  

b  

a  

t  

s  

i  

m

 

a  

m  

s  

fi  

t  

p  

o  

t

2

2

 

c  

s  

a  

s  

r  

t  

v  

e  

2  

B  

n  

T  

t  

c  

s  

u  

c  

i  

(  
crostructures; for example, alteration of glandular shape and spa-

tial distribution and arrangement of cells and nuclei. The quanti-

tative measures are utilized, in a machine learning framework, to

make a diagnostic decision. Due to the automated and quantitative

nature, digital pathology holds a potential for advancing the cur-

rent practice of cancer pathology [8] . Numerous digital pathology

methods have been proposed for analyzing differing types of tissue

specimen images [9,10] ; for instance, prostate cancer [11] , breast

cancer [12] , neuroblastoma [13] , and colorectal cancer [14] . A va-

riety of approaches have been employed to quantify tissue char-

acteristics such as color [15] , morphology [15–17] , Fourier trans-

form [18] , wavelet transform [15,19] , gray level co-occurrence ma-

trix [20] , fractal analysis [15,21] , local binary pattern [22] , proba-

bilistic models [23] , and graph theory [24] . Machine learning algo-

rithms, including decision tree [25] , k-nearest neighbor [19,15,21] ,

Bayesian [26] , support vector machine (SVM) [15,16] , boosting [27] ,

and deep learning [28,29] have been applied to determine the dis-

ease status. 

Many of the previous works in digital pathology arbitrarily

chose the resolution or scale at which a tissue image is processed

and/or analyzed [30] . It is likely determined by the resolution at

which the tissue specimen is digitized. This approach is contrary to

a pathologist who examines a tissue specimen under a microscope

at different resolutions; for example, the presence (or absence) of

basal nuclei (indicative of cancer) is assessed at a higher resolution

(e.g., x20 or x40 magnification) whereas a lower resolution is suit-

able to observe the glandular shape or formation. Accordingly, the

current pathological review process adopts a multi-resolution (or

scale) approach. There have been several multi-resolution digital

pathology approaches, mainly based on a coarse-to-fine strategy

[13,31,26,32] . The coarse-to-fine strategy, in general, makes an ini-

tial decision (or diagnosis) at a coarser resolution, and then refines

the decision at finer resolutions. In this strategy, the choice and or-

der of coarse and fine resolutions are still, by and large, arbitrary.

Further, it is not trivial to correct earlier mistakes (or misclassifica-

tions) as well as to determine the optimal resolutions for analysis.

Alternatively, a multiview learning approach is able to combine in-

formation from multiple sources (multiple resolutions in our case)

and to make a better decision. It was first developed in the con-

text of the semi-supervised learning, so called co-training algo-

rithm [33] . Later, several techniques were developed in the context

of the supervised learning; for example, classifier fusion [34] , local

learning [35] , and boosting [36] . 

In this study, we propose an automated, cooperative, and multi-

resolution approach to improve prostate cancer diagnosis ( Fig. 1 ).

Tissue specimens are digitized and segmented using intensity- and

p

exture-based image features [37] . Utilizing the segmented lumens

nd epithelial nuclei, a number of morphological features are com-

uted to characterize tissues at varying resolutions. A multiview

oosting classification method [38] is adopted to achieve a robust

nd accurate tissue segmentation and diagnosis through an effec-

ive and efficient cooperation between differing resolutions. We

ystematically evaluate the performance of the multiview boost-

ng method using a large set of digitized tissue images from tissue

icroarrays (TMA). 

The rest of this manuscript is organized as follows. In Materi-

ls and Methods section, we begin with describing the dataset and

ultiview boosting algorithm. In the following subsections, tissue

egmentation, tissue morphological feature extraction, and classi-

cation method are described. In Results section, the experimen-

al results, including tissue segmentation and cancer detection, are

resented. In Discussions section, the implications and limitations

f our study are discussed. Finally, we conclude in Conclusions sec-

ion. 

. Materials and methods 

.1. Dataset 

We employed five tissue microarrays (TMA) from Tissue mi-

roarray research program at the National Institutes of Health. Tis-

ue specimen sample cores in TMA are stained with hematoxylin

nd eosin (H&E) and scanned under a standard brightfield micro-

cope (Leica Biosystems) at 40x magnification, resulting in a spatial

esolution of 0.228 μm x 0.228 μm. A tissue sample core may con-

ain one or more glands. An experienced pathologist (S.M.H) re-

iewed each tissue specimen sample core and determined its dis-

ase status using the Gleason grading system. Five TMAs contain

05 (70 Benign, 135 Cancer), 163 (74 Benign, 89 Cancer), 185 (70

enign, 115 Cancer), 161 (79 Benign, 82 Cancer), and 158 (72 Be-

ign, 86 Cancer) tissue specimen samples, respectively ( Table 1 ).

he first TMA (“TMA1”) is used to train and test a tissue segmenta-

ion method; 101 (212,104 epithelium, 279,811 stroma, 72,827 nu-

leus, and 56,851 lm pixels) and 104 (219,235 epithelium, 275,893

troma, 83,291 nucleus, and 63,144 lm pixels) tissue samples are

sed for the purpose of training and testing, respectively. For can-

er diagnosis, the second TMA (“TMA2”; including 163 samples)

s used as the training dataset, and third, fourth, and fifth TMAs

“TMA3”, “TMA4”, and “TMA5”; including 185, 161, and 158 sam-

les, respectively) are used as the validation datasets. 
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Algorithm 1. Multiview boosting. 

Input 

S = {( x 1 , y 1 ), …, ( x n , y n )} where x i ∈ X 1 ×…×X m , 

y i ∈ {1, .., k }, weak learning algorithm WL , 

number of iteration T , baseline B 

Initialize 

i ∈ {1, …, n }, j ∈ {1, …, m }, l ∈ 1, …, k }: f 0, j ( i, l ) = 0 

Cost matrices: C 0 ,G ( i, l ) = C 0 , j ( i, l ) = 

{ 
1 if y i � = l 

−( k − 1 ) if y i = l 

where C 0, G is the global cost matrix 

for t = 1 to T do 

Train WL using C t −1, 1 , …, C t −1, m 

for j = 1 to m do 

Get weak classifier h t, j and edge δt, j on C t −1, j 

Compute αt, j = 

1 
2 

ln 
1+ δt, j 

1 −δt, j 

for j = 1 to m do 

Update cost matrices: C t, j ( i, l ) = 

{
exp( f t, j ( i, l ) − f t, j ( i, y i ) ) if y i � = l 

− ∑ k 
p=1 ,p� = y i exp( f t, j ( i, p ) − f t, j ( i, y i ) ) if y i = l 

where f t, j ( i, l ) = 

∑ t 
z=1 1[ h z, j (i ) = l ] αz, j d z, j (i ) , 

and d z, j (i ) = 

{ 
1 if h z, j (i ) = y i or � q ∈ { 1 , . . . , m } , h z,q (i ) = y i 
0 else 

Get h t = argmax 
h t, j 

( e dge h t, j on C t,G ) and δt on C t, G 

Compute αt = 

1 
2 

ln 1+ δt 

1 −δt 

Update global cost matrix: C t,G ( i, l ) = 

{
exp( f t,G ( i, l ) − f t,G ( i, y i ) ) if y i � = l 

− ∑ k 
j � = y i exp( f t,G ( i, j ) − f t,G ( i, y i ) ) if y i = l 

where f t,G ( i, l ) = 

∑ t 
z=1 1[ h z (i ) = l ] αz 

Final hypothesis 

H(x ) = argmax 
l∈ 1 , ... ,k 

f T ( x, l ) where f T ( i, l ) = 

∑ T 
t=1 1[ h t (i ) = l ] αt 

2
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.2. Multiview boosting 

Consider a dataset S = {( x 1 , y 1 ), …, ( x n , y n )} where x i ∈ X is an

xample and y i ∈ Y is a class label. X comprises a number of views

 = X 1 ×…×X m 

and Y = {1, .., k }. An example x i in a view m is rep-

esented as x i, m 

. In a cost matrix C , each row and column denotes

n example and a class label, respectively, i.e., C ( i, l ) is the cost of

lassifying the example i as the class l . It maintains a cost matrix

 j for a view j and a global cost matrix C G . A weak classifier h j is

earned on a view j , satisfying the edge condition if C j · 1 h j ≤ C j · B

here 1 h is the prediction matrix defined as 1 h j ( i, l ) is 1 if h j ( i ) = l

nd 0 otherwise. A baseline B is a cost matrix U γ defined as U γ ( i,

 ) is 
( 1 −γ ) 

k 
+ γ if y i = l and 

( 1 −γ ) 
k 

if y i � = l . Edge of h j is computed

s δj =C j • U j −C j • 1 j . It maintains the cost matrices in a way that

he hardest examples for a view are managed by the other views.

o achieve this, the matrices are updated as follows: i th row in C j 
s updated ( d j ( i ) = 1) only if the classifier from the view j correctly

lassifies the example i or if the rest of the classifiers misclassify

t. Also, the global cost matrix C G is utilized to select the best clas-

ifier from the classifiers built on different views at each iteration.

hereby, the final boosting classification model is a weighted sum

f the classifiers from different views. Depending on the training

rocedure, a classifier from a particular view may be selected mul-

iple times with different weights or completly missed from the

odel construction. The algorithm of multiview boosting is pre-

ented in Algorithm 1 . 

.3. Tissue segmentation 

To improve contrast and color representation, a tissue spec-

men image I (in RGB: red, green, and blue channels) is con-

erted into 3 different color forms: 1) Histogram equalization 2)

SV (hue, saturation, and value) color space 3) La ∗b ∗ (L: illumina-

ion, a ∗ and b ∗: color-opponent dimensions) color space. In total,

 color channels are generated. To quantify the image character-

stics, we employ intensity- and texture-based features. Intensity-

ased features include average, standard deviation, kurtosis, and

kewness. Texture-based features are computed using local binary
attern (LBP) [39] , local directional derivative pattern (LDDP) [40] ,

nd variance measure (VAR) [39] with two neighborhood topolo-

ies (P,R) = {(16,2),(24,3)} where P and R are the number of neigh-

oring pixels and the radius, respectively. These operators generate

 (binary) pattern code per pixel. The pattern codes are summa-

ized into a histogram. 

For a pixel x ∈ I , we extract the intensity- and texture-based

eatures at different resolutions (or views) by drawing a rectan-

ular window of differing sizes w ( w = 1, 3, 7, 15, and 31 pix-

ls; pixel resolution = 0.228 μm). For w = 1, the intensity value of 9

olor channels constitutes 9 features. For w = 3, 36 features (aver-

ge, standard deviation, kurtosis, and skewness per color channel)

re computed. For w ≥ 7, we compute 36 intensity-based features

nd 108 texture-based features ((P,R) = (16,2): 18 features for LBP

nd LDDP and 10 features for VAR per color channel; (P,R) = (24,3):

6 features for LBP and LDDP and 10 features for VAR per color

hannel). A multiview boosting algorithm is adopted to coopera-

ively integrate the 5 different sets of features and to provide a

istological class of a pixel. 

A tissue specimen image is segmented into a lumen, nucleus,

pithelium, and stroma in a cascaded manner ( Fig. 2 ). The tissue

pecimen image is first segmented into lumen and non-lumen ar-

as. Lumens are determined by using a threshold value ( > 0.5) on

he output of the lumen vs. non-lumen multiview boosting clas-

ification ( + : lumen, -: non-lumen), followed by a size constraint

 > 50 μm 

2 ). Second, non-lumen areas are classified into nucleus

nd non-nucleus areas. Thresholding ( > 0.5) the output of the nu-

leus vs. non-nucleus multiview boosting classification ( + : nucleus,

: non-nucleus), initial nuclei are identified. The size and shape of

he initial nuclei are examined: If the size of a nucleus is smaller

han 5 μm 

2 or the ratio of the major and minor axis is greater than

 when its size is smaller than 25 μm 

2 , then the nucleus is con-

idered to be an artifact. Individual nucleus is identified by apply-

ng the Euclidean distance transform and a watershed algorithm

 Fig. 3 ). Third, non-nucleus areas are grouped into epithelium and

troma. We identify epithelium by using a threshold value ( > 0.5)

n the output of the epithelium vs. stroma multiview boosting

lassification ( + : epithelium, -: stroma), followed by a size con-
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Fig. 2. Illustration of cascaded tissue segmentation . (a) H&E tissue image is segmented into (b) lumen (white), (c) nucleus (grey), and (d) epithelium (green). (e) Epithelial 

nuclei are identified and luminal artifacts are eliminated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 3. Illustration of nuclus segmentation . (a) H&E tissue image (b) the output of nucleus vs. non-nucleus multiview boosting classification (c) the result of thresholding 

and artifact removal (d) a distance map generated by the Euclidean distance transform (e) Individual nuclei are identified by a watershed algorithm and marked in color. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

straint ( > 500 μm 

2 ). Moreover, in order to identify and eliminate

lumen artifacts, the perimeter of a lumen is examined. By def-

inition, epithelial cells enclose a lumen in tissue. If < 40% of its

perimeter is surrounded by epithelium, such lumen is excluded. 

2.4. Tissue morphology: feature extraction 

We quantify tissue characteristics using morphological features

of lumens and epithelial nuclei and relational features between lu-

mens and epithelial nuclei ( Fig. 4 ). The morphological features of a

lumen are: 

(1) Area L area : A number of pixels within a lumen 

(2) Compactness: L peri / 
√ 

L area where L peri is the perimeter of a

lumen 

(3) Smoothness: L peri / L bperi where L bperi is the perimeter of a

bounding box of a lumen 

(4) Roundness: ( r • L peri )/ L area where is r the radius of a circle of

size L area 

(5) Convex hull ratio: L conv / L area where L conv is the size of a con-

vex hull of a lumen 

(6) Major-minor axis ratio: Ratio of major and minor axes of a

lumen 

(7) Extent: L peri / L barea where L barea is the size of a bounding box

of a lumen 

(8) Bounding circle ratio: L peri / L bcirc where L bcirc is the size of a

minimum bounding circle of a lumen 
(9) Distortion: STD ( L d )/ AVG ( L d ) where L d is the distance from the

center of a lumen to the boundary of the lumen and AVG

and STD represent the average and standard deviation 

(10) Epithelial perimeter ratio: Portion of the perimeter of a lu-

men that is connected to epithelium 

(11) Distance to the closest lumen 

(12) Symmetric index of a lumen boundary: Sum of ver-

tical and horizontal symmetry. Vertical and horizontal

symmetry are computed as 
∑ | L T i − L Bi | / ∑ ( L T i + L Bi ) and∑ | L Ri − L Li | / ∑ ( L Ri + L Li ) , respectively, where L Ti and L Bi are

vertical distances from a vertical axis to the boundary of a

lumen and L Li and L Ri are horizontal distances from a hor-

izontal axis to the boundary of a lumen. The vertical axis

runs along the longest diameter, and the horizontal axis runs

perpendicularly to the horizontal axis passing the center of

a lumen 

(13) Symmetric index of a lumen area: Sum of left-right

area symmetry and top-bottom area symmetry. Left-

right and top-bottom area symmetry are computed

as | L Larea −L Rarea |/( L Larea +L Rarea ) and | L Tarea −L Barea |/

( L Tarea +L Barea ), respectively, where L Larea , L Rarea , L Tarea ,

and L Barea denote the size of left, right, top, and bottom

quadrants (determined by vertical and horizontal axes),

respectively 

(14) Number of lumens 

Similarly, epithelial nucleus features are computed: 



J.T. Kwak, S.M. Hewitt / Computer Methods and Programs in Biomedicine 142 (2017) 91–99 95 

Fig. 4. Morphological feature extraction . Examples of morphological feature extraction for (a)(b)(c) a lumen and (d)(e)(f) a nucleus. (a) Compactness (b) Extent (c) Sym- 

metric index of a lumen boundary (d) Number of neighboring epithelial nuclei (e) Shape context (f) Distance fractal dimension. 
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(1) Area 

(2) Compactness 

(3) Smoothness 

(4) Roundness 

(5) Convex hull ratio 

(6) Major-minor axis ratio 

(7) Extent 

(8) Bounding circle ratio 

(9) Distortion 

(10) Shape context [41] : For each nucleus, a log-polar histogram

is constructed using 4 bins for r ( bin r ) and 4 bins for θ
( bin θ ). r is the distance between a nucleus and its neigh-

boring nucleus. θ is the angle between the line of reference

(x-axis) and the line through a nucleus and its neighboring

nucleus. A histogram is defined to be the shape context of a

nucleus 

bi n r = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , i f r ≤ log ( 20 μm ) 
2 , i f log ( 20 μm ) < r ≤ log ( 40 μm ) 
3 , i f log ( 20 μm ) < r ≤ log ( 60 μm ) 
4 , i f log ( 20 μm ) < r ≤ log ( 80 μm ) 

bi n θ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , i f 0 

◦ ≤ θ < 45 

◦ or 180 

◦ ≤ θ < 225 

◦

2 , i f 45 

◦ ≤ θ < 90 

◦ or 225 

◦ ≤ θ < 270 

◦

3 , i f 90 

◦ ≤ θ < 135 

◦ or 270 

◦ ≤ θ < 315 

◦

4 , i f 135 

◦ ≤ θ < 180 

◦ or 315 

◦ ≤ θ < 360 

◦

(11) Distance fractal dimension: For each nucleus, the distances

from a nucleus to its closest N neighboring nuclei are com-

puted and sorted in an ascending order. The slope of the

best linear least-squares fit is computed for the order ver-

sus distance plot. (N = 10, 20, 30) 

(12) Higuchi fractal dimension [42] : For each nucleus, the dis-

tances from a nucleus to its closest N (up to 30) neigh-

boring nuclei are computed and sorted in an ascend-

ing order, forming a data series: x (1), x (2), …, x ( N ). k
new data series are constructed for m = 1, …, k : x k m 

=
{ x (m ) , x ( m + k ) , . . . , x ( m + 

N−m 

k 
k ) } . The length of x k m 

is de-

fined as L m 

(k ) = ( 
∑ 

N−m 
k 

i =1 
| x ( m + ik ) − x ( m + ( i − 1 ) k ) | ) N−1 

N−m 
k 

k 
.

The average length is computed as L (k ) = 

1 
k 

∑ k 
m =1 L m 

(k ) . Re-

peating this for each k ranging from 1 to k max , the best lin-

ear least-squares fit for the plot of ln L ( k ) versus ln k gives

the Higuchi fractal dimension. 

(13) Entropy of nuclei distribution: Dividing a tissue image into

50 μm X 50 μm disjoint partitions, the entropy is computed

as H( nuclei ) = − ∑ n 
i =1 

∑ n 
j=1 p( x i j ) log p( x i j ) where p () is the

probability mass function of the number of nuclei in a par-

tition and x ij is the number of nuclei in ( i, j ) partition. 

(14) Distance to the closest epithelial nucleus 

(15) Number of nuclei 

(16) Number of neighboring epithelial nuclei: Number of epithe-

lial nuclei that are within 20 μm, 40 μm, 60 μm, and 80 μm

from a nucleus. 

Also, relational features utilizing both lumens and epithelial nu-

lei are computed: 

(1) Distance from a lumen to its closest epithelial nucleus 

(2) Number of epithelial nuclei that are assigned to a lumen: A

nucleus is assigned to its closest lumen 

(3) Distance from an epithelial nucleus to its closest lumen 

(4) Number of distal epithelial nuclei: A nucleus is designated as

a distal nucleus if it is 40 μm away from its closest lumen. 

For each histological class (a lumen and epithelial nucleus),

he morphological features are computed at different resolutions

or views) by sliding a rectangular window of differing sizes w

 w = 10 0, 30 0, 50 0, 70 0 μm; view1, 2, 3, and 4) and from a whole

issue sample (view5), i.e., 5 different resolutions are employed

 Fig. 5 ). The quantities describing lumens and epithelial nuclei
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Fig. 5. Multiview feature extraction . (Top) A set of morphological features are computed at multiple scales from a benign (grey rectangle) and cancer (black rectangle) 

tissue sample. Epithelial nuclei features are summarized within a window of differing sizes w ( w = 10 0, 30 0, 50 0, 70 0 μm, and a whole tissue sample; View1, 2, 3, 4, and 

Whole) using average (AVG) and standard deviation (STD). (Bottom) The AVG and STD of the epithelial nuclei features are presented and compared between a benign (grey 

rectangle) and cancer (black rectangle) tissue sample. Color bar represents the intensity of feature values. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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within a window are summarized by computing up to 5 statistics

(AVG, STD, minimum, maximum, and total sum). AVG, STD, mini-

mum, and maximum of the summarized statistics form the mor-

phological features (from 1st to 4th resolution). In total, 670 fea-

tures are computed (217 lm, 333 epithelial nucleus, and 120 rela-

tional features). We also calculate the 5 statistics of the morpho-

logical quantities from a whole tissue sample. These become the

morphological features for the 5th view, comprising 175 features

(54 lm, 91 epithelial nucleus, and 30 relational features). 

2.5. Classification: Cancer vs. Benign 

We employ a multiview boosting algorithm to cooperatively

combine the 5 different sets of morphological features and to de-

termine the disease status of tissue specimen samples. A linear

support vector machine (SVM) [43] is adopted as a weak classifier.

10% of the training dataset is sampled based on the global cost ma-

trix and used to build a weak classifier. For each view (or feature

set), the discriminative morphological features are selected using

Wilcoxon-rank sum test ( p -value < 0.01; 17 features are selected on

average) and used to learn the weak classifier. The boosting proce-

dure terminates if it reaches 20 boosting steps. 

In order to evaluate the performance of the proposed method,

four TMAs (TMA2, TMA3, TMA4, and TMA5) are employed. We

train a multiview boosting classifier on TMA2 (74 Benign, 89 Can-

cer) and test its performance on the rest of the TMAs (TMA3,

TMA4, TMA5; 221 Benign, 283 Cancer). The correct and incorrect

predictions by the multiview boosting classifier are summarized

into a receiver operating characteristic (ROC) plot, and the area
nder the ROC curve (AUC) is computed. Boot-strap resampling

ith 20 0 0 repetitions is adopted to assess 95% confidential interval

CI) of AUCs and statistical significance of the differences between

UCs of the two ROC curves [44] . 

. Results 

We adopted three multiview boosting classifiers to segment tis-

ue sample images: 1) lumen versus non-lumen 2) nucleus ver-

us non-nucleus 3) epithelium versus stroma. Training and test-

ng on the manually selected ROIs from TMA1, we obtained an

UC of 0.99 (95% CI: 0.99–1.00), 0.99 (95% CI: 0.99–0.99), 0.97

95% CI: 0.97–0.98) for lumen versus non-lumen, nucleus versus

on-nucleus, and epithelium versus stroma, respectively. Applying

he three multiview boosting classifiers in a cascaded fashion, lu-

ens and epithelial nuclei were identified from the tissue speci-

en samples in TMA2, TMA3, TMA4, and TMA5. 

Extracting and utilizing morphological features from lumens

nd epithelial nuclei at 5 different views ( w = 10 0, 30 0, 50 0,

00 μm, whole tissue), a multiview boosting classifier was trained

n TMA2 and tested on the validation datasets, including TMA3,

MA4, and TMA5 ( Table 2 ). The classifier achieved an AUC of 0.98

95% CI: 0.97–0.99). Moreover, we compared the performance of

he multiview boosting classification to that of single-view boost-

ng classifications. The same boosting scheme was adopted to train

nd validate the single-view boosting classifiers. An individual

oosting classifier was constructed using the morphological fea-

ures from each view. The AUCs of the single-view classifications

ere: 0.95 (95% CI: 0.93–0.97) for view1, 0.96 (95% CI: 0.94–0.97)
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Table 1 

Details of datasets. 

TMA TMA1 TMA2 TMA3 TMA4 TMA5 

Benign, ( n s ) 70 74 70 79 72 

Cancer, ( n s ) 135 89 115 82 86 

Total, ( n s ) 205 163 185 161 158 

Gleason Grade TMA1 TMA2 TMA3 TMA4 TMA5 

3 + 3 18 0 0 0 0 

3 + 4 48 49 36 33 39 

4 + 3 20 20 30 18 26 

4 + 4 35 10 35 16 13 

4 + 5 14 8 14 10 5 

5 + 4 0 2 0 5 3 

Tissue Type Lumen Epithelium Stroma Nucleus 

Training, ( n p ) 56 ,851 212 ,104 279 ,811 72 ,827 

Testing, ( n p ) 63 ,144 219 .235 275 ,893 83 ,291 

n s and n p denote the number of tissue sample cores and the num- 

ber of pixels, respectively. 

Table 2 

Results of cancer detection. 

AUC 95% CI p-value 

Multiview 0 .98 0 .97–0.99 –

View1 0 .95 0 .93–0.97 < 1e-4 

View2 0 .96 0 .94–0.97 < 1e-4 

View3 0 .95 0 .93–0.97 < 1e-3 

View4 0 .95 0 .94–0.97 < 1e-3 

View5 0 .96 0 .94–0.97 < 1e-3 

View1 + 2 + 3 + 4 + 5 0 .96 0 .95–0.98 < 1e-2 

AUC and CI represent area under ROC curve and confi- 

dence interval, respectively. 
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Table 3 

Comparison of cancer detection results. 

AUC 95% CI p-value 

Multiview 0 .98 0 .97–0.99 –

SVM-View1 0 .94 0 .92–0.96 < 1e-6 

SVM-View2 0 .95 0 .93–0.96 < 1e-5 

SVM-View3 0 .95 0 .93–0.97 < 1e-5 

SVM-View4 0 .95 0 .93–0.96 < 1e-4 

SVM-View5 0 .97 0 .96–0.98 < 0.05 

SVM-View1 + 2 + 3 + 4 + 5 0 .96 0 .95–0.97 < 1e-3 

RF-View1 0 .96 0 .94–0.98 < 1e-2 

RF-View2 0 .95 0 .93–0.97 < 1e-3 

RF-View3 0 .95 0 .94–0.97 < 1e-4 

RF-View4 0 .96 0 .95–0.97 < 1e-2 

RF-View5 0 .96 0 .95–0.98 < 1e-2 

RF-View1 + 2 + 3 + 4 + 5 0 .96 0 .94–0.98 < 1e-3 

SVM and RF denote support vector machine and random for- 

est, respectively. AUC and CI represent area under ROC curve 

and confidence interval, respectively. 
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or view2, 0.95 (95% CI: 0.93–0.97) for view3, 0.95 (95% CI: 0.94–

.970) for view4, and 0.96 (95% CI: 0.94–0.97 for view5 ( Table 1 ).

 single-view boosting classification on the entire feature set (con-

atenating 5 views) was also constructed and examined, and an

UC of 0.96 (95% CI: 0.95-0.98) was obtained. The AUC of the mul-

iview boosting classification was significantly larger than that of

he single-view classifications ( p-value < 0.01) ( Table 2 ). 

To ensure the robustness of the multiview boosting cancer de-

ection, we performed the following experiments. Using each of

he validation datasets (TMA3, TMA4, and TMA5), we trained a

eparate multiview boosting classifier and tested on the rest of

he datasets including TMA2. For examples, a multiview boosting

lassifier was trained on TMA3 and tested on TMA2, TMA4, and

MA5. Trained on TMA3, TMA4, and TMA5, these experiments re-

ulted in an AUC of 0.97 (95% CI: 0.96–0.98), 0.98 (95% CI: 0.96–

.99), and 0.97 (95% CI: 0.96–0.98), respectively. No significant dif-

erence was found in comparison to the above experiment where

MA2 was used as the training dataset (0.98 AUC; 95% CI: 0.97–

.99). Moreover, for each experiment, single-view boosting clas-

ifiers were constructed and compared to the multiview boosting

lassifier. For all the three experiments, statistically significant dif-

erences between the multiview boosting classification and single-

iew boosting classifications were found ( p-value < 0.05). 

Further, the classification result of the multiview boosting

ethod was compared to standard machine learning algorithms –

VM and random forests. Similar to the above single-view boost-

ng classifications, SVM with a radial basis kernel using all features

nd random forests with 20 trees and random selection of 
√ 

n fea-

ures ( n : number of features) were trained and tested using the

orphological features per view and the combined feature set of

 views. The multiview boosting classification outperformed SVM

 ≤ 0.97 AUC) and random forests ( ≤ 0.96 AUC) classifications ( Table

 ). The performance of the multiview boosting classification signif-

cantly differed from that of both SVM and random forests classifi-

ations ( p-value < 0.05). 
The importance of the morphological features was examined by

easuring the fraction of boosting iterations that used each of the

eatures ( Fig. 6 ). Lumen features were, in general, more frequently

elected than epithelial nucleus features. This is consistent with a

revious report [16] . The best-5 features included two lumen fea-

ures (convex hull ratio and symmetric index of a lumen bound-

ry), one epithelial nucleus feature (shape context), and two rela-

ional features (distance from a lumen to its closest epithelial nu-

leus and number of epithelial nuclei assigned to a lumen). That

s, the shape of a lumen, nuclei distribution, and relation between

umens and epithelial nuclei are most informative in distinguishing

ancers from benign tissue samples. 

The computational performance of our method was evaluated.

he method was implemented in MATLAB and performed on a PC

ith 3.4 GHz processor and 8GB of RAM. The spatial dimension of

 tissue specimen sample is ∼50 0 0 × 50 0 0 pixels on average. It re-

uires 3143 s to process and classify a single tissue specimen im-

ge. Notably, the tissue segmentation step takes > 90% of the en-

ire running time. This is because tissue segmentation is performed

er pixel basis. A substantial reduction in computation cost would

e possible via a parallelization of the process. The cancer detec-

ion by the multiview boosting takes a minimal amount of time

 < 1 s), i.e., no extra computation burden in comparison to other

achine learning algorithms. The summary of the computational

erformance of our method is available in Table 4 . 

. Discussions 

This study has focused on examining the ability of the multi-

iew boosting algorithm to improve the automated cancer detec-

ion. The experimental results suggest that the multiview boost-

ng approach could utilize tissue morphology from multiple views

o identify prostate cancers and outperform the standard machine

earning algorithms. 

Several multi-resolution approaches have been proposed to

etect and characterize cancers. The previous methods typically

nalyze tissues at multiple resolutions, i.e., learn a classifica-

ion model per resolution, and combine the classification mod-

ls/results via a coarse-to-fine strategy [13,31,26,32] or aggrega-

ion/averaging scheme [45,46] . The procedures are mainly pre-

etermined by heuristics whereas pathologists implicitly integrate

he information from multiple resolutions (or views) and make di-

gnostic decisions. The multiview boosting approach does not ex-

licitly determine how to combine the tissue information or clas-

ification results from differing views, but rather automatically and

nteractively integrates them. 
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Fig. 6. Importance of morphological features . The frequency of the morphological features of lumens and epithelial nuclei are shown. The frequency represents the fraction 

of boosting iterations that used each of the morphological features. 

Table 4 

Evaluation of computational performance. 

Multiview boosting cancer detection procedure Time (seconds) 

Tissue 

Segmentation 

Feature Extraction: Intensity and Texture 1447 

Segmentation 1400 

Cancer 

Detection 

Feature Extraction: Morphology 296 

Classification: Cancer vs. Benign < 1 
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The multiview boosting approach outperformed the single-view

boosting approaches, in particular, the single-view approach of

concatenating the entire 5 views. This demonstrates that the mul-

tiview boosting approach does not simply merge information from

differing views but is capable of optimizing the use of the different

information in a synergistic manner. Moreover, no significant dif-

ference was found in choosing different training and test dataset,

i.e., the performance of the multiview boosting approach was not

dataset dependent. 

Multimodal imaging/data approaches may take advantage of the

multiview boosting approach; for instance, combining microscopy

imaging with chemical imaging [16,11] , radiology imaging [47] , or

genomic data [48–50] . Multimodal imaging/data approaches of-

ten extract a set of features from each modality, simply combine

the feature sets together, and construct a classification model. The

multiview boosting algorithm could facilitate the effective and effi-

cient fusion of the differing imaging/data modalities as well as the

reliable and accurate cancer diagnosis. 

There are several limitations to our study. First, the presented

multiview boosting approach only identifies cancer tissue speci-

men samples. The extended study is desirable to assess the ca-

pability of the multiview boosting approach to provide Gleason

grade of tissue specimens. Second, the morphological features were

computed from a w x w rectangular window of 4 different sizes

( w = 10 0, 30 0, 50 0, 70 0 μm) and a whole tissue sample. The choice

of the size and number of the window is still arbitrary. Optimizing

these factors could provide an improved cancer detection. Third,

we only utilized morphological features of lumens and epithelial

nuclei in this study. Morphological features of glands and stroma

have been proposed to characterize cancers [51,12,52] . Also, other
 2
ypes of image features, e.g., texture features, can be incorporated

o our approach. Last, our method was developed and evaluated on

MAs that were prepared at one institute. The efficacy of our ap-

roach on whole slide prostate specimen images has not been ex-

mined. A validation study, including multi-institute datasets and

hole slide specimen images, could further ensure the reliability

nd validity of our approach. 

. Conclusion 

In this study, we have demonstrated a multiview boosting ap-

roach for prostate cancer diagnosis. The experimental results are

ufficiently promising to warrant prospective validation in the clin-

cs and to be extended to more complex pathological models. The

roposed method obtains tissue characteristics from multiple reso-

utions and cooperatively combines them to automatically identify

ancers with high accuracy. We anticipate that the application of

he multiview boosting approach will augment the accuracy, ro-

ustness, and utility of digital pathology tools by facilitating the

ulti-resolution process or analysis of tissues as well as the inte-

ration of information from various imaging technologies, leading

o improved cancer pathology. 
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